Монтаж электропроводки. Замена электропроводки. Испытание электропроводки. Стоимость электропроводки.
Монтаж электропроводки. Замена электропроводки. Испытание электропроводки. Стоимость электропроводки.
Солнечные панели. Солнечные батареи.
Солнечные панели. Солнечные батареи.
Прайс-лист на выполнение проектных работ в городе Винница
- AEG
- Ameri Solar
- Axitec
- Ja Solar
- LONGI Solar
- Risen
- Runda
- Seraphim Solar
Сетевые инверторы
Автономные инверторы
Гибридные инверторы
- SMA
- ABB
- Fronius
- Huawei
- Schnieder Electric
- Kostal
- Kaco
- SAJ
- Solaredge
- Victron Enerdgy
- Solax Power
- AXIOMA
- комплект для 1 модуля 280-360 Вт. Наклонная крыша.
- комплект для 36 модулей (10-13 кВт). Наклонная крыша.
- комплект для 71 модуля (20-25 кВт). Наклонная крыша.
- комплект для 106 модулей (30-38 кВт). Наклонная крыша.
- система крепления SRS балластные для плоских крыш
- система крепления SRS для плоских крыш
- система крепления SRS для скатных крыш
- крышные конструкции для крепления солнечных панелей
- система крепления SMS-211
- система крепления SMS-212
- система крепления SMS-302
- система крепления SMS-402
- болты
- гайки
Домашние солнечные электростанции СЭС
- комплект СЭС AmeriSolar | Huawei, 8 кВт
- комплект СЭС AEG | Huawei, 8 кВт
- комплект СЭС AEG | Huawei, 8 кВт
- комплект СЭС AmeriSolar | Fronius, 10 кВт
- комплект СЭС AEG | Fronius, 10 кВт
- комплект СЭС AmeriSolar | Huawei, 12 кВт
- комплект СЭС AEG | Huawei, 12 кВт
- комплект СЭС AmeriSolar | Fronius, 15 кВт
- комплект СЭС AmeriSolar | Huawei, 17 кВт
- комплект СЭС AEG | Fronius, 15 кВт
- комплект СЭС AmeriSolar | Huawei, 20 кВт
- комплект СЭС AEG | Huawei, 17 кВт
- комплект СЭС AmeriSolar | Fronius, 20 кВт
- комплект СЭС AEG | Huawei, 20 кВт
- комплект СЭС AEG | Fronius, 20 кВт
- комплект СЭС AmeriSolar | Fronius, 25 кВт
- комплект СЭС AmeriSolar | Huawei, 30 кВт
- комплект СЭС AmeriSolar | Fronius, 30 кВт
- комплект СЭС AEG | Fronius, 25 кВт
- комплект СЭС AEG | Huawei, 30 кВт
- комплект СЭС AEG | Fronius, 30 кВт
Альтернатиивная энергеетика — совокупность перспективных способов получения, передачи и использования энергии (зачастую — из возобновляемых источников), которые распространены не так широко, как традиционные, однако представляют интерес из-за выгодности их использования при, как правило, низком риске причинения вреда окружающей среде.
Направления альтернативной энергетики
Альтернативные источники энергии
Основным направлением альтернативной энергетики является поиск и использование альтернативных (нетрадиционных) источников энергии. Источники энергии — «встречающиеся в природе вещества и процессы, которые позволяют человеку получить необходимую для существования энергию». Альтернативный источник энергии является возобновляемым ресурсом, он заменяет собой традиционные источники энергии, функционирующие на нефти, добываемом природном газе и угле, которые при сгорании выделяют в атмосферу углекислый газ, способствующий росту парникового эффекта и глобальному потеплению. Причина поиска альтернативных источников энергии — потребность получать её из энергии возобновляемых или практически неисчерпаемых природных ресурсов и явлений. Так же во внимание может браться экологичность и экономичность.
Классификация источников
В последнее время многие страны расширяют использование ветроэнергетических установок (ВЭУ). Больше всего их используют в странах Западной Европы (Дания, ФРГ, Великобритания, Нидерланды), в США, в Индии, Китае.
Согласно Ассоциации ветроэнергетики Европы (WindEurope), по результатам 2019 года, в Европе лидерами в ветроэнергетике стали Дания (48 % электричества из ветра), Ирландия (33 %), Португалия (27 %), Германия (26 %) и Великобритания (22 %).
-
Автономные ветрогенераторы
-
Ветрогенераторы, работающие параллельно с сетью
-
Твёрдое: древесные отходы и биомасса (щепа, гранулы (топливные пеллеты) из древесины, лузги, соломы и т. п., топливные брикеты)
-
Газообразное: биогаз, синтез-газ.
Солнечные электростанции (СЭС) работают более чем в 80 странах.
-
Солнечный коллектор, в том числе Солнечный водонагреватель, используется как для нагрева воды для отопления, так и для производства электроэнергии.
-
Энергетическая башня, совмещает солнечную и ветроэнергетику. Есть два варианта. Первый — охлаждение нагретого солнцем воздуха на высоте нескольких сотен метров и преобразование кинетической энергии нисходящих потоков воздуха в электроэнергию. Второй — нагревание солнцем почвы и воздуха в очень большом парнике и преобразование кинетической энергии восходящего потока воздуха в электроэнергию.
Альтернативная гидроэнергетика
-
Приливные электростанции (ПЭС) пока имеются лишь в нескольких странах — Франции, Великобритании, Канаде, России, Индии, Китае, Южной Корее, Норвегии
-
Мини и микро ГЭС (устанавливаются в основном на малых реках).
-
Аэро ГЭС (конденсация влаги из атмосферы, в том числе из облаков) — работают опытные установки.
Используется как для нагрева воды для отопления, так и для производства электроэнергии. На геотермальных электростанциях вырабатывают немалую часть электроэнергии в странах Центральной Америки, на Филиппинах, в Исландии; Исландия также являет собой пример страны, где термальные воды широко используются для обогрева, отопления.
-
Тепловые электростанции (принцип отбора высокотемпературных грунтовых вод и использования их в цикле)
-
Грунтовые теплообменники (принцип отбора тепла от грунта посредством теплообмена)
Мускульная сила человека
Хотя мускульная сила является самым древним источником энергии, и человек всегда стремился заменить её чем-то другим, в настоящее время её значение растёт вместе с ростом использования транспортных средств на мускульной тяге — велосипед, самокат, веломобиль и т. п.
Грозовая энергетика — это способ использования энергии путём поимки и перенаправления энергии молний в электросеть. Компания Alternative Energy Holdings в 2006 году объявила о создании прототипа модели, которая может использовать энергию молнии. Предполагалось, что эта энергия окажется значительно дешевле энергии, полученной с помощью современных источников, окупаться такая установка будет за 4—7 лет.
Криоэнергетика — это способ аккумулирования избыточной энергии посредством сжижения воздуха.
В промышленной зоне Слау построена первая в мире 300-киловаттная криогенная аккумулирующая электростанция.
В феврале 2011 года от Highview Power Storage отсоединился стартап Dearman Engine, занимающийся разработкой криогенных двигателей.
В ВМФ Швеции субмарины типа «Готланд» стали первыми серийными лодками с двигателями Стирлинга, которые позволяют им находиться под водой непрерывно до 20 суток. В настоящее время все подводные лодки ВМС Швеции оснащены двигателями Стирлинга, а шведские кораблестроители уже хорошо отработали технологию оснащения этими двигателями подводных лодок, путём врезания дополнительного отсека, в котором и размещается новая двигательная установка. Двигатели работающие на жидком кислороде, который используется в дальнейшем для дыхания, имеют очень низкий уровень шума.
Гравитационная энергетика — аккумулирование избыточной энергии посредством запасания её в виде потенциальной энергии гравитационного поля.
Компания Energy Vault разработала проект гравитационной аккумулирующей электростанции, представляющей собой подъёмный кран с шестью стрелами, электродвигатели которого работают как электрогенераторы при спуске блоков, и поставленные друг на друга блоки. Когда в электросеть поступает избыточная энергия, она тратится на поднятие блоков. А в часы-пик, при спуске блоков кранами, энергия возвращается в сеть.
Управляемый термоядерный синтез
Синтез более тяжёлых атомных ядер из более лёгких с целью получения энергии, который носит управляемый характер. До сих пор не применяется.
Направления альтернативной энергетики помимо использования нетрадиционных источников энергии
Распределённое производство энергии
Новая тенденция в энергетике, связанная с производством тепловой и электрической энергии.
На сегодняшний день для производства водорода требуется больше энергии, чем возможно получить при его использовании, поэтому считать его источником энергии нельзя. Он является лишь средством хранения и доставки энергии.
-
Водородные двигатели (для получения механической энергии)
-
Топливные элементы (для получения электричества)
Согласно оценке HydrogenCouncil (ассоциация крупных международных компаний, куда входят Total, Toyota, BP, Shell и другие, в основном европейские и японские, корпорации), в 2050 году доля водорода в потреблении энергии составит 18 %.
Получение электроэнергии в фотоэлектрических элементах, расположенных на околоземной орбите или на Луне. Электроэнергия будет передаваться на Землю в форме микроволнового излучения. Может способствовать глобальному потеплению. До сих пор не применяется.
Перспективы
Перспективы использования возобновляемых источников энергии связаны с их экологической чистотой, низкой стоимостью эксплуатации и ожидаемым топливным дефицитом в традиционной энергетике.
По оценкам Европейской комиссии к 2020 году в странах Евросоюза в индустрии возобновляемой энергетики будет создано 2,8 миллионов рабочих мест. Индустрия возобновляемой энергетики будет создавать 1,1 % ВВП.
По оценкам МЭА, для достижения нулевого суммарного выброса углекислого газа к 2050 г. с целью предотвращения потепления на Земле более чем на 1,5 градуса по Цельсию, две трети всей энергии и 90% электроэнергии на планете будет производить зелёная энергетика. К 2030 году развитие зеленой энергетики позволит создать 14 миллионов новых рабочих мест.
Инвестиции
Согласно отчёту ООН, в 2008 году во всём мире было инвестировано $140 млрд в проекты, связанные с альтернативной энергетикой, тогда как в добычу угля и нефти было инвестировано $110 млрд.
Во всём мире в 2008 году инвестировали $51,8 млрд в ветроэнергетику, $33,5 млрд в солнечную энергетику и $16,9 млрд в биотопливо. Страны Европы в 2008 году инвестировали в альтернативную энергетику $50 млрд, страны Америки — $30 млрд, Китай — $15,6 млрд, Индия — $4,1 млрд[16].
В 2018 году инвестиции в сектор возобновляемой энергетики достигли показателя $ 288,9 млрд. На глобальном уровне солнечная энергетика по-прежнему осталась основным направлением инвестиций с показателем $139,7 млрд в 2018 году (сокращение на 22 %). Инвестиции в сферу ветроэнергетики в 2018 году увеличились на 2 % и достигли показателя в $134,1 млрд. На остальные секторы пришёлся значительно меньший объём инвестиций, хотя инвестиции в биоэнергетику и производство энергии путём сжигания отходов увеличились на 54 % и составили $8,7 млрд.
Распространение
Согласно данным BP, в 2019 году доля альтернативных возобновляемых источников энергии (без ГЭС) составила 10,8 % в мировой генерации электричества, впервые обойдя атомную энергию по этому показателю. По состоянию на 2020 год суммарная мировая установленная мощность возобновляемой энергии (включая гидроэнергетику) 2 838 ГВт.[18] На 2020 год гидроэнергетика обеспечивает производство до 41 % возобновляемой и до 16,8 % всей электроэнергии в мире, установленная гидроэнергетическая мощность достигает 1 170 ГВт. По состоянию на 2020 год суммарная мировая установленная мощность возобновляемой энергии (без гидроэнергетики) 1 668 ГВт. На 2020 год суммарная мировая установленная мощность солнечной энергетики достигает 760 ГВт. На 2020 год суммарная мировая установленная мощность ветроэнергетики достигает 743 ГВт.[18] На 2020 год суммарная мировая установленная мощность биоэнергетики достигает 145 ГВт. На 2020 год суммарная мировая установленная мощность геотермальной энергетики 14,1 ГВт.
В первичной энергии (общем энергобалансе) доля альтернативной энергетики выросла до 5 %, поднявшись с 4,5 % в 2018 году и также обойдя атомную энергию.
По состоянию на 2017 год альтернативные источники энергии выработали 9,6 % электроэнергии в США, включая 6,3 % из ветровых и 1,3 % из солнечных электростанций. С учётом больших ГЭС, вклад возобновляемых источников энергии составил 17,1 % от выработанного в США электричества.
За первую половину 2020 года в Германии возобновляемые источники энергии выработали рекордные 56 % электричества. Из них 4 % выработала традиционная гидроэнергетика, а 52 % — альтернативные источники. Ветер занял первое место среди источников электроэнергии, выработав 30,6 % электричества, а солнце дало 11,4 %.